基于Solr DIH实现MySQL表数据全量索引和增量索引

实现MySQL表数据全量索引和增量索引,基于Solr DIH组件实现起来比较简单,只需要重复使用Solr的DIH(Data Import Handler)组件,对data-config.xml进行简单的修改即可。Solr DIH组件的实现类为org.apache.solr.handler.dataimport.DataImportHandler,在Solr的solrconfig.xml中配置两个handler,配置分别说明如下。 全量索引 solrconfig.xml配置如下: <requestHandler name="/dataimport" class="org.apache.solr.handler.dataimport.DataImportHandler"> <lst name="defaults"> <str name="config">data-config.xml</str> </lst> </requestHandler> 上面这个是针对全量索引的,主要是配置data-config.xml文件,示例如下所示: <dataConfig> <dataSource name="jdbc" driver="com.mysql.jdbc.Driver" url="jdbc:mysql://172.0.8.249:5606/marketing_db_saved

分类算法:决策树(C4.5)

C4.5是机器学习算法中的另一个分类决策树算法,它是基于ID3算法进行改进后的一种重要算法,相比于ID3算法,改进有如下几个要点: 用信息增益率来选择属性。ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(entropy, 熵是一种不纯度度量准则),也就是熵的变化值,而C4.5用的是信息增益率。 在决策树构造过程中进行剪枝,因为某些具有很少元素的结点可能会使构造的决策树过适应(Overfitting),如果不考虑这些结点可能会更好。 对非离散数据也能处理。 能够对不完整数据进行处理。 首先,说明一下如何计算信息增益率。 熟悉了ID3算法后,已经知道如何计算信息增益,计算公式如下所示(来自Wikipedia): 或者,用另一个更加直观容易理解的公式计算: 按照类标签对训练数据集D的属性集A进行划分,得到信息熵: 按照属性集A中每个属性进行划分,得到一组信息熵: 计算信息增益 然后计算信息增益,即前者对后者做差,得到属性集合A一组信息增益: 这样,信息增益就计算出来了。 计算信息增益率 下面看,计算信息增益率

Solr DIH: 基于MySQL表数据建立索引

选择使用Solr,对数据库中数据进行索引,可以单独写程序将数据库中的数据导出并建立索引,这个过程可能对于数据处理的控制更灵活一些,但是却可能带来很大的工作量。选择使用Solr的DIH组件,可以很方便的对数据库表中数据进行索引,下面基于MySQL数据库实现建立索引。 首先,需要设计你的schema,最主要的工作是,将数据库表中字段映射为Lucene索引(Solr直接使用Lucene的索引格式和数据)的Field,从而将数据表中的一条记录映射为Lucene中的Document,然后进行索引。另外,在schema.xml配置文件中,还需要指定各个字段在索引数据中的属性信息(如是否索引、是否存储、是否分词、排序规则等),以及Field所使用的分析器、过滤器等。在schema.xml文件进行配置,下面是配置实例: <?xml version="1.0" ?> <schema name="example core zero" version="1.1"> <types> <fieldtype name="int" class="solr.IntField" omitNorms="true" /> <fieldtype name="stri

分类算法:决策树(ID3)

决策树是以实例为基础的归纳学习算法。 它从一组无次序、无规则的元组中推理出决策树表示形式的分类规则。它采用自顶向下的递归方式,在决策树的内部结点进行属性值的比较,并根据不同的属性值从该结点向下分支,叶结点是要学习划分的类。从根到叶结点的一条路径就对应着一条合取规则,整个决策树就对应着一组析取表达式规则。 一棵决策树由以下3类结点构成: 根结点 内部结点(决策结点) 叶结点 其中,根结点和内部结点都对应着我们要进行分类的属性集中的一个属性,而叶结点是分类中的类标签的集合。如果一棵决策树构建起来,其分类精度满足我们的实际需要,我们就可以使用它来进行分类新的数据集。 这棵决策树就是我们根据已有的训练数据集训练出来的分类模型,可以通过使用测试数据集来对分类模型进行验证,经过调整模型直到达到我们所期望的分类精度,然后就可以使用该模型来预测实际应用中的新数据,对新的数据进行分类。 通过上面描述,我们已经能够感觉出,在构建决策树的过程中,如果选择其中的内部结点(决策结点),才能够使我们的决策树得到较高的分

JVM 分代GC策略分析

我们以Sun HotSpot VM来进行分析,首先应该知道,如果我们没有指定任何GC策略的时候,JVM默认使用的GC策略。Java虚拟机是按照分代的方式来回收垃圾空间,我们应该知道,垃圾回收主要是针对堆(Heap)内存进行分代回收,将对内存可以分成新生代(Young Generation)、年老代(Tenured Generation)和永久代(Permanent Generation)三个部分。 分代GC 分代GC包括如下三代: 新生代(Young Generation) 新生代有划分为Eden、From Survivor和To Survivor三个部分,他们对应的内存空间的大小比例为8:1:1,也就是,为对象分配内存的时候,首先使用Eden空间,经过GC后,没有被回收的会首先进入From Survivor区域,任何时候,都会保持一个Survivorq区域(From Survivor或To Survivor)完全空闲,也就是说新生代的内存利用率最大为90%。From Survivor和To Survivor两个区域会根据GC的实际情况,进行互换,将From Survivor区域中的对象全部复制到To Survivor区域中,或者反过来,将To Survivor区域中的对象全部复制到From Survivor区域中。 年老代(

开发JAX-WS 2.0 Web服务

实现一个Web服务的过程,大概有3个基本的过程: Web服务提供者设计并开发Web服务 Web服务提供者发布Web服务 Web服务请求者调用Web服务 下面,我通过一个例子,来实现上述过程: 假设一个Web服务提供者提供一个对域名进行探测解析的服务,给定一个域名,可以给出改域名解析后对应的IP地址列表。Web服务提供者设计并开发这个Web服务,然后将服务发布出去,并可以让Web服务请求者进行调用。 开发Web服务 服务接口文件DetectionService.java代码如下所示: package org.shirdrn.server.webservices.jaxws; public interface DetectService { DetectedResult detect(String domain); } 对应的实现类DomainDetectionService.java,如下所示: package org.shirdrn.server.webservices.jaxws; import java.net.InetAddress; import java.net.UnknownHostException; import java.util.Date; import javax.jws.WebMethod; import javax.jws.WebService; import javax.jws.soap.SOAPBinding; import org.xbill.DNS.Address; @WebSe

Hadoop Job使用第三方依赖jar文件

当我们实现了一个Hadoop MapReduce Job以后,而这个Job可能又依赖很多外部的jar文件,在Hadoop集群上运行时,有时会出现找不到具体Class的异常。出现这种问题,基本上就是在Hadoop Job执行过程中,没有从执行的上下文中找到对应的jar文件(实际是unjar的目录,目录里面是对应的Class文件)。所以,我们自然而然想到,正确配置好对应的classpath,MapReduce Job运行时就能够找到。 有两种方式可以更好地实现,一种是设置HADOOP_CLASSPATH,将Job所依赖的jar文件加载到HADOOP_CLASSPATH,这种配置只针对该Job生效,Job结束之后HADOOP_CLASSPATH会被清理;另一种方式是,直接在构建代码的时候,将依赖jar文件与Job代码打成一个jar文件,这种方式可能会使得最终的jar文件比较大,但是结合一些代码构建工具,如Maven,可以在依赖控制方面保持一个Job一个依赖的构建配置,便于管理。下面,我们分别说明这两种方式。 设置HADOOP_CLASSPATH 比如,我们有一个使用HBase的应用,操作HBase数据库中表,肯定需要ZooKeeper,所以对应的jar文件的位置都要设置正确,让运行时Job能够

CentOS 6.4上HAProxy-1.4.24安装配置

HAProxy是一款免费、快速并且可靠的一种代理解决方案,支持高可用性、负载均衡特性,同时适用于做基于TCP和HTTP的应用的代理。对于一些负载较大的Web站点,使用HAProxy特别合适。HAProxy能够支撑数以万计的并发连接。它的配置简单,能够很容易整合大我们现有的应用架构之中。 下面,我们在CentOS 6.4上进行安装配置HAProxy。 安装配置 按照如下步骤进行安装: wget http://haproxy.1wt.eu/download/1.4/src/haproxy-1.4.24.tar.gz tar xvzf haproxy-1.4.24.tar.gz cd haproxy-1.4.24 make TARGET=linux26 make install 默认安装,HAProxy对应的配置文件的存放路径为/etc/haproxy/haproxy.cfg。 我们看一下,默认安装的配置文件内容,如下所示: #--------------------------------------------------------------------- # Example configuration for a possible web application. See the # full configuration options online. # # http://haproxy.1wt.eu/download/1.4/doc/configuration.txt # #-------------------------------------------

基于Dubbo的Hessian协议实现远程调用

Dubbo基于Hessian实现了自己Hessian协议,可以直接通过配置的Dubbo内置的其他协议,在服务消费方进行远程调用,也就是说,服务调用方需要使用Java语言来基于Dubbo调用提供方服务,限制了服务调用方。同时,使用Dubbo的Hessian协议实现提供方服务,而调用方可以使用标准的Hessian接口来调用,原生的Hessian协议已经支持多语言客户端调用,支持语言如下所示: Java:http://hessian.caucho.com/#Java Flash/Flex:http://hessian.caucho.com/#FlashFlex Python:http://hessian.caucho.com/#Python C++:http://hessian.caucho.com/#C C#:http://hessian.caucho.com/#NETC D:http://hessian.caucho.com/#D Erlang:http://hessian.caucho.com/#Erlang PHP:http://hessian.caucho.com/#PHP Ruby:http://hessian.caucho.com/#Ruby Objective-C:http://hessian.caucho.com/#ObjectiveC 下面,我们的思路是,先基于Dubbo封装的Hessian协议,实现提供方服务和消费方调用服务,双方必须都使用Dubbo来开发;然后,基于Dubbo封装的Hessian协议实现提供方服务,然后服务

Dubbo实现RPC调用使用入门

使用Dubbo进行远程调用实现服务交互,它支持多种协议,如Hessian、HTTP、RMI、Memcached、Redis、Thrift等等。由于Dubbo将这些协议的实现进行了封装了,无论是服务端(开发服务)还是客户端(调用服务),都不需要关心协议的细节,只需要在配置中指定使用的协议即可,从而保证了服务提供方与服务消费方之间的透明。 另外,如果我们使用Dubbo的服务注册中心组件,这样服务提供方将服务发布到注册的中心,只是将服务的名称暴露给外部,而服务消费方只需要知道注册中心和服务提供方提供的服务名称,就能够透明地调用服务,后面我们会看到具体提供服务和消费服务的配置内容,使得双方之间交互的透明化。 示例场景 我们给出一个示例的应用场景: 服务方提供一个搜索服务,对服务方来说,它基于SolrCloud构建了搜索服务,包含两个集群,ZooKeeper集群和Solr集群,然后在前端通过Nginx来进行反向代理,达到负载均衡的目的。 服务消费方就是调用服务进行查询,给出查询条件(满足Solr的REST-like接口)。 应用设计 基于上面的示例场景,我们打算使用ZooKeeper集群作为服务注

Hadoop Streaming原理及实践

Hadoop Streaming提供了一个便于进行MapReduce编程的工具包,使用它可以基于一些可执行命令、脚本语言或其他编程语言来实现Mapper和 Reducer,从而充分利用Hadoop并行计算框架的优势和能力,来处理大数据。需要注意的是,Streaming方式是基于Unix系统的标准输入输出来进行MapReduce Job的运行,它区别与Pipes的地方主要是通信协议,Pipes使用的是Socket通信,是对使用C++语言来实现MapReduce Job并通过Socket通信来与Hadopp平台通信,完成Job的执行。任何支持标准输入输出特性的编程语言都可以使用Streaming方式来实现MapReduce Job,基本原理就是输入从Unix系统标准输入,输出使用Unix系统的标准输出。 Hadoop是使用Java语言编写的,所以最直接的方式的就是使用Java语言来实现Mapper和Reducer,然后配置MapReduce Job,提交到集群计算环境来完成计算。但是很多开发者可能对Java并不熟悉,而是对一些具有脚本特性的语言,如C++、Shell、Python、 Ruby、PHP、Perl有实际开发经验,Hadoop Streaming为这一类开发者提供了使用Hadoop集群来进行处理数据的工具,即工具包

Dubbo架构设计详解

Dubbo是Alibaba开源的分布式服务框架,它最大的特点是按照分层的方式来架构,使用这种方式可以使各个层之间解耦合(或者最大限度地松耦合)。从服务模型的角度来看,Dubbo采用的是一种非常简单的模型,要么是提供方提供服务,要么是消费方消费服务,所以基于这一点可以抽象出服务提供方(Provider)和服务消费方(Consumer)两个角色。关于注册中心、协议支持、服务监控等内容,详见后面描述。 总体架构 Dubbo的总体架构,如图所示: Dubbo框架设计一共划分了10个层,而最上面的Service层是留给实际想要使用Dubbo开发分布式服务的开发者实现业务逻辑的接口层。图中左边淡蓝背景的为服务消费方使用的接口,右边淡绿色背景的为服务提供方使用的接口, 位于中轴线上的为双方都用到的接口。 下面,结合Dubbo官方文档,我们分别理解一下框架分层架构中,各个层次的设计要点: 服务接口层(Service):该层是与实际业务逻辑相关的,根据服务提供方和服务消费方的业务设计对应的接口和实现。 配置层(Config):对外配置接口,以ServiceConfig和ReferenceConfig为中心,可