Spark-1.3.1与Hive整合实现查询分析

在大数据应用场景下,使用过Hive做查询统计分析的应该知道,计算的延迟性非常大,可能一个非常复杂的统计分析需求,需要运行1个小时以上,但是比之于使用MySQL之类关系数据库做分析,执行速度快很多很多。使用HiveQL写类似SQL的查询分析语句,最终经过Hive查询解析器,翻译成Hadoop平台上的MapReduce程序进行运行,这也是MapReduce计算引擎的特点带来的延迟问题:Map中间结果写文件。如果一个HiveQL语句非常复杂,会被翻译成多个MapReduce Job,那么就会有很多的Map输出中间结果数据到文件中,基本没有数据的共享。 如果使用Spark计算平台,基于Spark RDD数据集模型计算,可以减少计算过程中产生中间结果数据写文件的开销,Spark会把数据直接放到内存中供后续操作共享数据,减少了读写磁盘I/O操作带来的延时。另外,如果基于Spark on YARN部署模式,可以充分利用数据在Hadoop集群DataNode节点的本地性(Locality)特点,减少数据传输的通信开销。 软件准备 我