Apache Hudi 架构设计和基本概念

Apache Hudi 是一个 Data Lakes 的开源方案,Hudi 是 Hadoop Updates and Incrementals 的简写,它是由 Uber 开发并开源的 Data Lakes 解决方案。Hudi 具有如下基本特性/能力: Hudi 能够摄入(Ingest)和管理(Manage)基于 HDFS 之上的大型分析数据集,主要目的是高效的减少入库延时。 Hudi 基于 Spark 来对 HDFS 上的数据进行更新、插入、删除等。 Hudi 在 HDFS 数据集上提供如下流原语:插入更新(如何改变数据集);增量拉取(如何获取变更的数据)。 Hudi 可以对 HDFS 上的 parquet 格式数据进行插入/更新操作。 Hudi 通过自定义 InputFormat 与 Hadoop 生态系统(Spark、Hive、Parquet)集成。 Hudi 通过 Savepoint 来实现数据恢复。 目前,Hudi 支持 Spark 2.x 版本,建议使用 2.4.4+ 版本的 Spark。 基本架构 与 Kudu 相比,Kudu 是一个支持 OLTP workload 的数据存储系统,而 Hudi 的设计目标是基于 Hadoop 兼容的文件系统(如 HDFS、S3 等),重度依赖 Spark 的数据处理能力来实现增量处理和丰富的查询能力,Hudi 支持 Incremental Pulling 而 Kudu 不

Impala与HBase整合实践

我们知道,HBase是一个基于列的NoSQL数据库,它可以实现的数据的灵活存储。它本身是一个大表,在一些应用中,通过设计RowKey,可以实现对海量数据的快速存储和访问。但是,对于复杂的查询统计类需求,如果直接基于HBase API来实现,性能非常差,或者,可以通过实现MapReduce程序来进行查询分析,这也继承了MapReduce所具备的延迟性。 实现Impala与HBase整合,我们能够获得的好处有如下几个: 可以使用我们熟悉的SQL,像操作传统关系型数据库一样,很容易给出复杂查询、统计分析的SQL设计 Impala查询统计分析,比原生的MapReduce以及Hive的执行速度快很多 Impala与HBase整合,需要将HBase的RowKey和列映射到Impala的Table字段中。Impala使用Hive的Metastore来存储元数据信息,与Hive类似,在于HBase进行整合时,也是通过外部表(EXTERNAL)的方式来实现。 准备工作 首先,我们需要做如下准备工作: 安装配置Hadoop集群(http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH4-Installation-Guide/cdh4ig_topic_4_4.html) 安装配置HB

Cloudera Impala架构设计要点

我们知道,在实时性要求不是很高的应用场景中,比如,月度统计报表生成等,我们基于传统的Hadoop MapReduce来处理海量大数据(包括使用Hive),在各方面表现都还不错,只需要离线处理数据,然后存储结果即可。但是如果在一些实时性要求相对较高的应用场景中,哪怕处理时间能够在原有的基础有大幅度地减少,也能很好地提升用户体验。对于大数据的实时性要求,其实是相对的,比如,传统使用MapReduce计算框架处理PB级别的查询分析请求,可能耗时30分钟甚至更多,但是如果能够使这个延迟大大降低,如3分钟计算出结果,这是很令人震撼的。Impala就是基于这样的需求驱动而出现的。 Impala是Cloudera开发的一款用来进行大数据实时查询分析的开源工具,它能够实现通过我们熟悉的传统关系数据库的SQL风格来操作大数据,数据可以是存储到HDFS或HBase中的。 下面,我们从不同的角度来认识和理解Cloudera Impala: 设计目标 官网给出的介绍是,使用Impala来实现SQL on Hadoop,实现对海量数据的实时查询分析,它的优势有如下几点: 快速 可以方便地执行SQL语句,在数秒内返回