使用Flink实现索引数据到Elasticsearch

使用Flink处理数据时,可以基于Flink提供的批式处理(Batch Processing)和流式处理(Streaming Processing)API来实现,分别能够满足不同场景下应用数据的处理。这两种模式下,输入处理都被抽象为Source Operator,包含对应输入数据的处理逻辑;输出处理都被抽象为Sink Operator,包含了对应输出数据的处理逻辑。这里,我们只关注输出的Sink Operator实现。 Flink批式处理模式,运行Flink Batch Job时作用在有界的输入数据集上,所以Job运行的时间是有时限的,一旦Job运行完成,对应的整个数据处理应用就已经结束,比如,输入是一个数据文件,或者一个Hive SQL查询对应的结果集,等等。在批式处理模式下处理数据的输出时,主要需要实现一个自定义的OutputFormat,然后基于该OutputFormat来构建一个Sink,下面看下OutputFormat接口的定义,如下所示: @Public public interface OutputFormat<IT> extends Serializable { void configure(Confi

Flink使用Broadcast State实现流处理配置实时更新

Broadcast State是Flink支持的一种Operator State。使用Broadcast State,可以在Flink程序的一个Stream中输入数据记录,然后将这些数据记录广播(Broadcast)到下游的每个Task中,使得这些数据记录能够为所有的Task所共享,比如一些用于配置的数据记录。这样,每个Task在处理其所对应的Stream中记录的时候,读取这些配置,来满足实际数据处理需要。 另外,在一定程度上,Broadcast State能够使得Flink Job在运行过程中与外部的其他系统解耦合。比如,通常Flink会使用YARN来管理计算资源,使用Broadcast State就可以不用直接连接MySQL数据库读取相关配置信息了,也无需对MySQL做额外的授权操作。因为在一些场景下,会使用Flink on YARN部署模式,将Flink Job运行的资源申请和释放交给YARN去管理,那么就存在Hadoop集群节点扩缩容的问题,如新加节点可能需要对一些外部系统的访问,如MySQL等进行连接操作授权,如果忘记对MysQL访问授权,Flink Job被调度到新增

Flink Checkpoint、Savepoint配置与实践

Flink Checkpoint Checkpoint是Flink实现容错机制最核心的功能,它能够根据配置周期性地基于Stream中各个Operator的状态来生成Snapshot,从而将这些状态数据定期持久化存储下来,当Flink程序一旦意外崩溃时,重新运行程序时可以有选择地从这些Snapshot进行恢复,从而修正因为故障带来的程序数据状态中断。这里,我们简单理解一下Flink Checkpoint机制,如官网下图所示: Checkpoint指定触发生成时间间隔后,每当需要触发Checkpoint时,会向Flink程序运行时的多个分布式的Stream Source中插入一个Barrier标记,这些Barrier会根据Stream中的数据记录一起流向下游的各个Operator。当一个Operator接收到一个Barrier时,它会暂停处理Steam中新接收到的数据记录。因为一个Operator可能存在多个输入的Stream,而每个Stream中都会存在对应的Barrier,该Operator要等到所有的输入Stream中的Barrier都到达。当所有Stream中的Barrier都已经到达该Operator,这时所有的B

Apache Flink:使用EventTime与WaterMark进行流数据处理

在实际开发过程中,我们可能需要接入各种流数据源,比如在线业务用户点击流数据、监控系实时收集到的事件流数据、从传感器采集到的实时数据,等等,为了处理方便他们可能会写入Kafka消息中间件集群中某个/某些topic中,或者选择其它的缓冲/存储系统。这些数据源中数据元素具有固定的时间属性,是在流数据处理系统之外的其它系统生成的。比如,上亿用户通过手机终端操作触发生成的事件数据,都具有对应的事件时间;再特殊一点,可能我们希望回放(Replay)上一年手机终端用户的历史行为数据,与当前某个流数据集交叉分析才能够得到支持某类业务的特定结果,这种情况下,基于数据所具有的事件时间进行处理,就具有很重要的意义了。 下面,我们先从Flink支持的3个与流数据处理相关的时间概念(Time Notion):ProcessTime、EventTime、IngestionTime。有些系统对时间概念的抽象有其它叫法,比如,Google Cloud Dataflow中称为时间域(Time Domain)。在Flink中,

Apache Flink:Keyed Window与Non-Keyed Window

Apache Flink中,Window操作在流式数据处理中是非常核心的一种抽象,它把一个无限流数据集分割成一个个有界的Window(或称为Bucket),然后就可以非常方便地定义作用于Window之上的各种计算操作。本文我们主要基于Apache Flink 1.4.0版本,说明Keyed Window与Non-Keyed Window的基本概念,然后分别对与其相关的WindowFunction与WindowAllFunction的类设计进行分析,最后通过编程实践来应用。 基本概念 Flink将Window分为两类,一类叫做Keyed Window,另一类叫做Non-Keyed Window。为了说明这两类Window的不同,我们看下Flink官网给出的,基于这两种类型的Window编写代码的结构说明。 基于Keyed Window进行编程,用户代码基本结构如下所示: stream .keyBy(...) <- keyed versus Non-Keyed windows .window(...) <- required: "assigner" [.trigger(...)] <- optional

Apache Flink 1.4.0:Standalone集群模式实践

Apache Flink是一个开源的流处理框架,提供了分布式的、高性能的、高可用的特性,同时能够为流式应用程序提供多种编程语言的API,更多有关Flink的内容,不再累述,请参考官方文档,本文主要以Flink Standalone集群安装配置、编程实践为主。 Flink集群安装配置 首先,选择一主二从共3个节点来安装配置Flink Standalone集群: Master:ali-bj01-tst-cluster-001.xiweiai.cn Worker:ali-bj01-tst-cluster-002.xiweiai.cn Worker:ali-bj01-tst-cluster-003.xiweiai.cn 为了方便安装文件远程拷贝,单独创建一个hadoop用户,并打通从Master节点使用ssh到Worker节点之间的免密码登录。 在Master节点上下载、准备Flink 1.4.0安装文件,执行如下命令: wget http://mirror.bit.edu.cn/apache/flink/flink-1.4.0/flink-1.4.0-bin-hadoop26-scala_2.11.tgz tar xvzf flink-1.4.0-bin-hadoop26-scala_2.11.tgz 接着,修改Flink配置文件flink-1.4.0/conf/fli

Apache Flink:特性、概念、组件栈、架构及原理分析

Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能。现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为他们它们所提供的SLA是完全不相同的:流处理一般需要支持低延迟、Exactly-once保证,而批处理需要支持高吞吐、高效处理,所以在实现的时候通常是分别给出两套实现方法,或者通过一个独立的开源框架来实现其中每一种处理方案。例如,实现批处理的开源方案有MapReduce、Tez、Crunch、Spark,实现流处理的开源方案有Samza、Storm。 Flink在实现流处理和批处理时,与传统的一些方案完全不同,它从另一个视角看待流处理和批处理,将二者统一起来:Flink是完全支持流处理,也就是说作为流处理看待时输入数据流是无界的;批处理被作为一种特殊的流处理,只是它的输入数据流被定义为有界的。基于同一个Flink运行时(Flink Runti