使用libsvm进行分类预测

使用libsvm,首先需要将实际待分类的内容或数据(训练数据,或预测数据)进行量化,然后通过libsvm提供的功能实现分类和预测。下面介绍使用libsvm的基本步骤。 准备训练数据 数据格式: <label1> <index1>:<value11> <index2>:<value12>... <label2> <index1>:<value21> <index2>:<value22>... <label3> <index1>:<value31> <index2>:<value32>... ... 每一行,表示以已定义的类别标签,以及属于该标签的各个属性值,每个属性值以“属性索引编号:属性值”的格式。一行内容表示一个类别属性以及与该类别相关的各个属性的值。属性的值,一般可以表示为“该属性隶属于该类别的程度”,越大,表示该属性更能决定属性该类别。 上面的数据必须使用数字类型,例如类别,可以通过不同的整数来表示不同的类别。 准备的原始训练样本数据存放在文件raw_data.txt中,