基于协同过滤的推荐方法

协同过滤(Collaborative Filtering, CF)是推荐系统广泛使用的一种技术,它主要通过考虑用户(User)与用户之间、物品(Item)与物品之间的相似度(Similarity),来向用户推荐物品,常被用在电商网站中。其中,在推荐系统中最常使用的协同过滤方法,有如下4种: 基于用户的协同过滤推荐 基于物品的协同过滤推荐 基于模型的协同过滤推荐 混合协同过滤推荐 上面4种方法中,基于用户的协同过滤推荐、基于物品的协同过滤推荐都是基于内存的协同过滤推荐,一般在数据量较小的应用场景下,可以直接在线使用的实时推荐方法;基于模型的协同过滤推荐一般用于离线计算,它采用机器学习的方法,一般首相将用户偏好行为数据分成2个数据集(有时可能会将数据集分成k个子集,采用交叉验证的方式来提高模型精度),一个为训练集,一个为测试集,使用训练集数据来训练出推荐模型,然后使用测试集数据来评估模型的精度,当满足特定精度时,可以将得到的推荐模型应用于实