Autograd 是一个反向自动微分系统(或梯度计算引擎),基于记录所有的操作来构建一个有向无环图——Autograd 计算图,其中叶子节点是输入 Tensor,根节点 root 是输出 Tensor,通过跟踪图中从根节点 root 到叶子节点的路径上的操作,能够自动地计算出梯度。 在 PyTorch 中,模型训练的每一轮迭代,都会创建对应的 Autograd 计算图:在前向传播阶段动态地创建 Autograd 计算图,在反向传播阶段根据 Autograd 计算图来进行梯度的计算。 构建分布式 Autograd 计算图 对于分布式模型训练环境下,需要在各个节点(主机)之间进行大量的 RPC 调用,统一协调各个过程来完成模型的训练。PyTorch 实现的分布式 Autograd,在前向传播过程中构建 Autograd 计算图,并且基于 Autograd 计算图在反向传播过程中计算梯度。在前向传播过程中,PyTorch 持续跟踪各个 RPC 调用的情况,必须确保在反向传播过程中计算是正确的,所以 PyTorch 在实现过程中使用了 send、recv 这一对函数来进行跟踪,当执行 RPC 调用时将 send 和 recv 绑定到 Autograd 计算图上。 send 函数被绑定到 RPC