LeNet-5 是由 Yann LeCun提出的卷积神经网络,在论文《Gradient-Based Learning Applied To Document Recognition》中可以看到 LeNet-5 网络模型的结构,如下图所示:

通过上图可以看到,从左至右网络各个层顺序连接:
- 输入层 :图片大小 32×32
- 卷积层1 :输入通道 1,输出通道 6,卷积核大小 5×5,步长 1
- 池化层 :输入通道 6,输出通道 6,过滤器大小 2×2,步长 2
- 卷积层2 :输入通道 6,输出通道 16,卷积核大小 5×5, 步长 1
- 池化层2 :输入通道 16,输出通道 16,过滤器大小 2×2,步长 2
- 全连接层1:节点数 120
- 全连接层2:节点数 84
- 全连接层3:节点数 10
我们只需要准备好数据集,并基于上图连接结构,使用 PyTorch 搭建 CNN 网络的结构并进行训练和使用。
实现 LeNet-5 模型
基本环境配置如下:
Python:3.11.3
PyTorch:2.0.1(torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2)
1 准备数据集
使用经典的手写数字数据集 MNIST,可以直接通过 PyTorch 的 datasets.MNIST 下载并准备数据:
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
# Download training/test data from open datasets.
training_data = datasets.MNIST(root="data", train=True, download=True, transform=ToTensor(),)
test_data = datasets.MNIST(root="data", train=False, download=True, transform=ToTensor(),)
batch_size = 64
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
print(f"Shape of X [N, C, H, W]: {X.shape}")
print(f"Shape of y: {y.shape} {y.dtype}")
break
MNIST 数据集中的图片尺寸都是单通道的 28×28 的。
2 实现模型
实现 LeNet-5 模型,主要工作就是配置该 CNN 神经网络的每一层,并实现前向传播的计算逻辑,代码如下所示:
# Get cpu, gpu or mps device for training.
device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
print(f"Using {device} device")
# Define model
class LeNet5Model(nn.Module):
def __init__(self):
super().__init__()
self._conv1 = nn.Conv2d(1, 6, 5, 1)
self._pool1 = nn.MaxPool2d(2)
self._conv2 = nn.Conv2d(6, 16, 5, 1)
self._pool2 = nn.MaxPool2d(2)
self._fc1 = nn.Linear(4*4*16, 120)
self._fc2 = nn.Linear(120, 84)
self._fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self._conv1(x)
x = self._pool1(x)
x = self._conv2(x)
x = self._pool2(x)
x = x.view(-1, 4 * 4 * 16)
x = self._fc1(x)
x = self._fc2(x)
x = self._fc3(x)
return x
# Create model
model = LeNet5Model().to(device)
print(model)
可以看到,输出的 LeNet-5 模型结构,如下所示:
LeNet5Model( (_conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1)) (_pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (_conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1)) (_pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (_fc1): Linear(in_features=256, out_features=120, bias=True) (_fc2): Linear(in_features=120, out_features=84, bias=True) (_fc3): Linear(in_features=84, out_features=10, bias=True) )
3 训练模型
下面是训练模型的过程,代码如下所示:
# Define loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
# training loop
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
if batch % 100 == 0:
loss, current = loss.item(), (batch + 1) * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
# test loop
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
# execute model training and testing
epochs = 10
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
print("Done!")
运行代码可以看到迭代过程,结果示例如下:
Epoch 1 ------------------------------- loss: 2.317153 [ 64/60000] loss: 2.305442 [ 6464/60000] loss: 2.306234 [12864/60000] loss: 2.324416 [19264/60000] loss: 2.302907 [25664/60000] loss: 2.297269 [32064/60000] loss: 2.305612 [38464/60000] loss: 2.291686 [44864/60000] loss: 2.301056 [51264/60000] loss: 2.307510 [57664/60000] Test Error: Accuracy: 11.9%, Avg loss: 2.291815 Epoch 2 ------------------------------- loss: 2.293081 [ 64/60000] loss: 2.284958 [ 6464/60000] loss: 2.288021 [12864/60000] loss: 2.292037 [19264/60000] loss: 2.281588 [25664/60000] loss: 2.278919 [32064/60000] loss: 2.274934 [38464/60000] loss: 2.274108 [44864/60000] loss: 2.271511 [51264/60000] loss: 2.271358 [57664/60000] Test Error: Accuracy: 41.4%, Avg loss: 2.261012 ... ... Epoch 9 ------------------------------- loss: 0.506072 [ 64/60000] loss: 0.397812 [ 6464/60000] loss: 0.355343 [12864/60000] loss: 0.390962 [19264/60000] loss: 0.431304 [25664/60000] loss: 0.475698 [32064/60000] loss: 0.307452 [38464/60000] loss: 0.511966 [44864/60000] loss: 0.481164 [51264/60000] loss: 0.522870 [57664/60000] Test Error: Accuracy: 88.4%, Avg loss: 0.397837 Epoch 10 ------------------------------- loss: 0.454751 [ 64/60000] loss: 0.365487 [ 6464/60000] loss: 0.319525 [12864/60000] loss: 0.371037 [19264/60000] loss: 0.389002 [25664/60000] loss: 0.452506 [32064/60000] loss: 0.273858 [38464/60000] loss: 0.487788 [44864/60000] loss: 0.447199 [51264/60000] loss: 0.497519 [57664/60000] Test Error: Accuracy: 89.1%, Avg loss: 0.369253 Done!
通过训练,可以得到我们需要的最终想要的模型,这时将模型保存下来以便后面使用:
saved_model_path = "LeNet5.pth"
torch.save(model.state_dict(), saved_model_path)
print("Saved PyTorch Model State to ", saved_model_path)
4 加载、使用模型
model = LeNet5Model().to(device)
model.load_state_dict(torch.load("LeNet5.pth"))
classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
model.eval()
for i in range(10):
x, y = test_data[i][0], test_data[i][1]
with torch.no_grad():
x = x.to(device)
pred = model(x)
predicted, actual = classes[pred[0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')
示例结果如下所示:
Predicted: "7", Actual: "7" Predicted: "2", Actual: "2" Predicted: "1", Actual: "1" Predicted: "0", Actual: "0" Predicted: "4", Actual: "4" Predicted: "1", Actual: "1" Predicted: "4", Actual: "4" Predicted: "9", Actual: "9" Predicted: "6", Actual: "5" Predicted: "9", Actual: "9"
参考资源
- https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
- https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d

本文基于署名-非商业性使用-相同方式共享 4.0许可协议发布,欢迎转载、使用、重新发布,但务必保留文章署名时延军(包含链接:http://shiyanjun.cn),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请与我联系。