k-means聚类算法原理及其实现

k-means(k-均值)算法是一种基于距离的聚类算法,它用质心(Centroid)到属于该质心的点距离这个度量来实现聚类,通常可以用于N维空间中对象。下面,我们以二维空间为例,概要地总结一下k-means聚类算法的一些要点:

  • 除了随机选择的初始质心,后续迭代质心是根据给定的待聚类的集合S中点计算均值得到的,所以质心一般不是S中的点,但是标识的是一簇点的中心。
  • 基本k-means算法,开始需要随机选择指定的k个质心,因为初始k个质心是随机选择的,所以每次执行k-means聚类的结果可能都不相同。如果初始随机选择的质心位置不好,可能造成k-means聚类的结果非常不理想。
  • 计算质心:假设k-means聚类过程中,得到某一个簇的集合Ci={p(x1,y1), p(x2,y2), …,p(xn,yn)},则簇Ci的质心,质心x坐标为(x1+x2+ …+xn)/n,质心y坐标为(y1+y2+ …+yn)/n。
  • k-means算法的终止条件:质心在每一轮迭代中会发生变化,然后需要重新将非质心点指派给最近的质心而形成新的簇,如果只有很少的一部分点在迭代过程中,还在改变簇(如,更新一次质心,有些点从一个簇移动到另一个簇),那么满足这样一个收敛条件,可以提前结束迭代过程。
  • k-means算法的框架是:首先随机选择k个初始质心点,然后执行聚类处理迭代,不断更新质心,直到满足算法收敛条件。由于该算法收敛于局部最优,所以多次执行聚类算法,通过比较,选择聚类效果最好的结果作为最终的结果。
  • k-means算法聚类完成后,没有离群点,所有的点都会被指派到对应的簇中。

由于k-means算法比较简单,对于算法的实现过程,我们概要地描述如下:

  1. 随机选择k个初始质心;
  2. 如果没有满足聚类算法终止条件,则继续执行步骤3,否则转步骤5;
  3. 计算每个非质心点p到k个质心的欧几里德距离,将p指派给距离最近的质心;
  4. 根据上一步的k个质心及其对应的非质心点集,重新计算新的质心点,然后转步骤2;
  5. 输出聚类结果,算法可以执行多次,使用散点图比较不同的聚类结果。

下面,我们详细说明上述步骤:

随机选择初始质心

由于随机选择初始质心,每次执行聚类选择的初始质心都不相同,这也导致k-means算法聚类后,没有确定的结果,或者说,可能两次聚类的结果完全不同。该过程的实现,比较简单,只要随机选择给定待聚类点集合中的点即可,初始质心是实际存在的点,代码如下所示:

     @Override
     public TreeSet<Centroid> select(int k, List<Point2D> points) {
          TreeSet<Centroid> centroids = Sets.newTreeSet();
          Set<Point2D> selectedPoints = Sets.newHashSet();
          while(selectedPoints.size() < k) { // 先随机选择k个点
               int index = random.nextInt(points.size());
               Point2D p = points.get(index);
               selectedPoints.add(p);
          }
         
          Iterator<Point2D> iter = selectedPoints.iterator();
          int id = 0;
          while(iter.hasNext()) { // 构造Centroid质心对象,分配一个id作为簇的唯一标识
               centroids.add(new Centroid(id++, iter.next()));
          }
          return centroids;
     }

有一些方法,可以在这一步中,解决初始质心选择的随机性,可以将选择初始质心作为选择策略的设计,根据需要选择不同的策略,比如,可以这样设计策略接口:

public interface SelectInitialCentroidsPolicy {

     TreeSet<Centroid> select(int k, List<Point2D> points);
}

我们这里只给了简单地随机选择策略,也是基本k-means算法最基础的策略。其他方法,可以查阅相关资料。

计算欧几里德距离,指派点到质心所在簇

计算每个非质心点到全部k个质心点的距离,将该非质心点指派给距离最小的质心点所在的簇。如果输出的数据量比较大,可以将数据集合进行分割,基于多线程去并行处理,最后再合并结果。我们的实现思路是:每个线程都共享k个质心的集合,然后将非质心点均匀分发到多个线程的队列中,然后每个线程从队列取出非质心点,计算非质心点到k个质心的距离,并计算出距离最短的质心,将该非质心点指派给该质心所在的簇。实现代码如下所示:

                                   Task task = q.poll();
                                   Point2D p1 = task.point;
                                  
                                   // assign points to a nearest centroid
                                   Distance minDistance = null;
                                   for(Centroid centroid : task.centroids) { // 计算一个非质心点,到k个质心的距离,并计算距离最短的
                                        double distance = MetricUtils.euclideanDistance(p1, centroid);
                                        if(minDistance != null) {
                                             if(distance < minDistance.distance) {
                                                  minDistance = new Distance(p1, centroid, distance);
                                             }
                                        } else {
                                             minDistance = new Distance(p1, centroid, distance);
                                        }
                                   }
                                   LOG.debug("Assign Point2D[" + p1 + "] to Centroid[" + minDistance.centroid + "]");
                                  
                                   Multiset<Point2D> pointsBelongingToCentroid = localClusteredPoints.get(minDistance.centroid); 
                                   if(pointsBelongingToCentroid == null) {
                                        pointsBelongingToCentroid = HashMultiset.create();
                                        localClusteredPoints.put(minDistance.centroid, pointsBelongingToCentroid); // localClusteredPoints是局部的,key为质心,value为属于该质心的非质心点的集合
                                   }
                                   pointsBelongingToCentroid.add(p1);

这样,经过一轮的迭代计算,每个线程都处理完,得到一个局部的指派的簇的集合,然后对每个局部集合进行合并,得到一个全局的、质心到属于该质心的点的簇的集合,作为下一次迭代的输入,也比较容易处理。

迭代终止条件计算

这一步应该算是k-means算法聚类过程中比较核心的步骤。我们考虑了如下3个终止条件:

  1. 比较相邻的2轮迭代结果,在2轮过程中移动的非质心点的个数,设置移动非质心点占比全部点数的最小比例值,如果达到则算法终止
  2. 为了防止k-means聚类过程长时间不收敛,设置最大迭代次数,如果达到最大迭代次数还没有达到上述条件,则也终止计算
  3. 如果相邻2次迭代过程,质心没有发生变化,则算法终止,这是最强的终止约束条件。能够满足这种条件,几乎是不可能的,除非两次迭代过程中没有非质心点重新指派给到另一个不同的质心。

我们计算k-means聚类的核心代码框架,如下所示:

     @Override
     public void clustering() {         
          // start centroid calculators
          for (int i = 0; i < parallism; i++) { // 启动parallism个线程计算距离并指派簇
               CentroidCalculator calculator = new CentroidCalculator(calculatorQueueSize);
               calculators.add(calculator);
               executorService.execute(calculator);
               LOG.info("Centroid calculator started: " + calculator);
          }
         
          // sort by centroid id ASC
          TreeSet<Centroid> centroids = selectInitialCentroidsPolicy.select(k, allPoints); // 随机选择初始质心
          LOG.info("Initial selected centroids: " + centroids);

          // 下面进入迭代过程           
          int iterations = 0;
          boolean stopped = false;
          CentroidSetWithClusteringPoints lastClusteringResult = null; // 上一轮聚类结果
          CentroidSetWithClusteringPoints currentClusteringResult = null; // 当前轮聚类结果
          int totalPointCount = allPoints.size();
          float currentClusterMovingPointRate = 1.0f;
          try {
               // enter clustering iteration procedure
               while(currentClusterMovingPointRate > maxMovingPointRate
                         && !stopped
                         && iterations < maxIterations) { // 3个终止条件约束
                    LOG.info("Start iterate: #" + (++iterations));
                   
                    currentClusteringResult = computeCentroids(centroids); // 每一轮重新计算质心点
                    LOG.info("Re-computed centroids: " + centroids);
                   
                    // compute centroid convergence status
                    int numMovingPoints = 0;
                    if(lastClusteringResult == null) {
                         numMovingPoints = totalPointCount;
                    } else {
                         // compare 2 iterations' result for centroid computation
                         numMovingPoints = analyzeMovingPoints(lastClusteringResult.clusteringPoints, currentClusteringResult.clusteringPoints); // 分析两轮聚类结果:在簇之间移动的非质心点的集合
                        
                         // check iteration stop condition
                         boolean isIdentical = (currentClusteringResult.centroids.size() ==
                                   Multisets.intersection(HashMultiset.create(lastClusteringResult.centroids), HashMultiset.create(currentClusteringResult.centroids)).size()); // 检测终止最强约束条件:两轮迭代是否没有非质心点发生重新指派,即质心完全没变
                         if(iterations > 1 && isIdentical) {
                              stopped = true;
                         }
                    }
                    lastClusteringResult = currentClusteringResult;
                    centroids = currentClusteringResult.centroids;
                    currentClusterMovingPointRate = (float) numMovingPoints / totalPointCount; // 计算非质心点移动比例
                   
                    LOG.info("Clustering meta: k=" + k +
                              ", numMovingPoints=" + numMovingPoints +
                              ", totalPointCount=" + totalPointCount +
                              ", stopped=" + stopped +
                              ", currentClusterMovingPointRate=" + currentClusterMovingPointRate );
                   
                    // reset some structures
                    reset();
                    for(CentroidCalculator calculator : calculators) {
                         calculator.reset();
                    }
                   
                    LOG.info("Finish iterate: #" + iterations);
               }
          } finally {
               // notify all calculators to exit normally
               clusteringCompletedFinally = true;
              
               LOG.info("Shutdown executor service: " + executorService);
               executorService.shutdown();
              
               // process final clustering result
               LOG.info("Final clustering result: ");
               Iterator<Entry<Centroid, Multiset<Point2D>>> iter = currentClusteringResult.clusteringPoints.entrySet().iterator();
               while(iter.hasNext()) { // 达到终止条件后,处理最终的结果
                    Entry<Centroid, Multiset<Point2D>> entry = iter.next();
                    int id = entry.getKey().getId();
                    Set<ClusterPoint<Point2D>> set = Sets.newHashSet();
                    for(Point2D p : entry.getValue()) {
                         set.add(new ClusterPoint2D(p, id));
                    }
                    clusteredPoints.put(id, set);
                    id++;
               }
               centroidSet = currentClusteringResult.clusteringPoints.keySet();
          }
     }

下面,我们讨论一下,如何根据两次聚类迭代结果,计算在簇之间移动的点的个数。如果把两轮聚类迭代结果中的k个簇分别从整体上来比较,得出在前后两轮迭代结果中在簇之间移动的非质心点的个数,可能比较麻烦,也容易陷入混乱的计算逻辑中。
我们可以这么思考:假设a、b两轮迭代结束,a轮中生成k个簇的集合Ca={C(a1),C(a2), …,C(ak)},b轮中生成k个簇的集合Cb={C(b1),C(b2), …,C(bk)},我们假设生成的簇是有编号的,而且,a轮生成的簇C(ai),在b轮重新计算质心后生成的新簇为C(bi),这样一一对应起来,分别计算在簇C(ai)与簇C(bi)之间移动的点的个数,首先计算簇C(ai)与簇C(bi)的交集S:

S = C(ai) ∩ C(bi)

然后,分别计算簇C(ai)、簇C(bi)与S的差集Dai、Dbi:

Dai = Ca - S = Ca - (C(ai) ∩ C(bi) )
Dbi = Cb - S = Cb - (C(ai) ∩ C(bi) )

这样,差集Dai和Dbi中的点都是在两轮聚类中移动的非质心点,由于一个簇中的点可能移动到另一个簇中,如某非质心点p,从C(ai)移动到C(bj),其中i不等于j,那么在计算差集Dai与Dbi时,发现C(ai)中少了点p,点p被放入差集Dai;在计算簇C(aj)与簇C(bj)时,发现C(bj)中多了一个点p,则点p又被放入差集Dbj。可见,点p被放入到两个差集Dai和Dbj中,所以我们需要对最终得到的k个差集先做并计算:

D = Σ(Dai ∪ dbi), i=1,2, ...k

然后再对集合D做一个去重操作,得到的点的集合就是两轮迭代过程中,在簇之间移动的点的集合。
我们基于上述计算思路实现的代码,对应上面代码中的analyzeMovingPoints方法,代码实现如下所示:

     private int analyzeMovingPoints(TreeMap<Centroid, Multiset<Point2D>> lastClusteringPoints,
               TreeMap<Centroid, Multiset<Point2D>> currentClusteringPoints) {
          // Map<current, Map<last, intersected point count>>
          Set<Point2D> movingPoints = Sets.newHashSet(); // 用来收集移动的点,使用Set集合类去重
          Iterator<Entry<Centroid, Multiset<Point2D>>> lastIter = lastClusteringPoints.entrySet().iterator();
          Iterator<Entry<Centroid, Multiset<Point2D>>> currentIter = currentClusteringPoints.entrySet().iterator();
          while(lastIter.hasNext() && currentIter.hasNext()) {
               Entry<Centroid, Multiset<Point2D>> last = lastIter.next();
               Entry<Centroid, Multiset<Point2D>> current = currentIter.next();
               Multiset<Point2D> intersection = Multisets.intersection(last.getValue(), current.getValue()); // 计算交集S = C(ai) ∩ C(bi)
               movingPoints.addAll(Multisets.difference(last.getValue(), intersection)); // 计算差集Dai = Ca - S = Ca - (C(ai) ∩ C(bi) )
               movingPoints.addAll(Multisets.difference(current.getValue(), intersection)); // 计算差集Dbi = Cb - S = Cb - (C(ai) ∩ C(bi) )
          }
          return movingPoints.size();
     }

通过上面的计算逻辑,就能够计算出两轮聚类过程中,在簇之间移动的点的集合和个数。

聚类效果

每次执行k-means聚类,得到的结果都不相同,我们可以执行两次,取k=10,看一下聚类结果的散点图,如下图所示:
kmeans-10
图中,标号为9999的点为质心点,上面两图对比可以看出,聚类结果中簇的形状是不同的,其中红色值满足迭代停止条件的质心的坐标位置。
下面,我们选择不同的k值:5、10、20、50,分别执行k-means聚类,然后对比聚类结果,如下图所示:
kmeans-5-10-20-50
总结

通过上面的实现,我们知道基本k-means聚类算法的实现过程比较简单,很容易实现。另外,该聚类算法适用于处理具有中心的球形簇,而且运行相当有效。但是,该聚类算法的结果受随机选择的质心的影响,每次计算都得到不同的结果,而且当待聚数据的具有不同的尺寸,或者密度非常不均匀,聚类结果非常的差。为了解决k-means聚类随机算法选择初始质心的问题,会有很多处理方法,可以查阅相关资料,其中bisecting k-means算法(二分k-均值)就是基于基本k-means得到的一种变体,能够比较好地处理,不受随机选择初始质心的影响,后续我们会实现并详细讨论。

Creative Commons License

本文基于署名-非商业性使用-相同方式共享 4.0许可协议发布,欢迎转载、使用、重新发布,但务必保留文章署名时延军(包含链接:http://shiyanjun.cn),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请与我联系

发表评论

电子邮件地址不会被公开。 必填项已用*标注

您可以使用这些HTML标签和属性: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>