Akka集群原理
Akka集群支持去中心化的基于P2P的集群服务,没有单点故障(SPOF)问题,它主要是通过Gossip协议来实现。对于集群成员的状态,Akka提供了一种故障检测机制,能够自动发现出现故障而离开集群的成员节点,通过事件驱动的方式,将状态传播到整个集群的其它成员节点。
- 状态转移与故障检测
Akka内部为集群成员定义了一组有限状态(6种状态),并给出了一个状态转移矩阵,代码如下所示:
private[cluster] val allowedTransitions: Map[MemberStatus, Set[MemberStatus]] = Map( Joining -> Set(Up, Down, Removed), Up -> Set(Leaving, Down, Removed), Leaving -> Set(Exiting, Down, Removed), Down -> Set(Removed), Exiting -> Set(Removed, Down), Removed -> Set.empty[MemberStatus]) }
Akka集群中的每个成员节点,都有可能处于上面的一种状态,在发生某些事件以后,会发生状态转移。需要注意的是,除了Down和Removed状态以外,节点处于其它任何一个状态时都有可能变成Down状态,即节点故障而无法提供服务,而在变成Down状态之前有一个虚拟的Unreachable状态,因为在Gossip收敛过程中,是无法到达或者经由Unreachable状态的节点,这个状态是由Akka实现的故障探测器(Failure Detector)来检测到的。处于Down状态的节点如果想要再次加入Akka集群,需要重新启动,并进入Joining状态,然后才能进行后续状态的转移变化。Akka集群成员节点状态及其转移情况,如下图所示:
我们说明一下Akka中的故障检测机制。在Akka中,集群中每一个成员节点M会被集群中的其他另一组节点(默认是5个)G监控,这一组节点G并不是整个集群中的其他所有节点,只是整个集群全部节点的一个子集,组G中的节点会检测节点M是否处于Unreachable状态,这是通过发送心跳来确认节点M是否可达,如果不可达则组G中的节点会将节点M的Unreachable状态向集群中组G之外的其它节点传播,最终使得集群中的每个成员节点都知道节点M故障。
- Akka事件集合
节点状态发生转移会触发某个事件,我们可以根据不同类型的事件来进行相应的处理,为了能够详细捕获到各种事件,我们先看一下Akka定义的事件集合,如图所示:
通常,在基于Akka Cluster的应用中实现Actor时,可以重写Actor的preStart方法,通过Cluster来订阅集群事件,代码示例如下所示:
val cluster = Cluster(context.system) override def preStart(): Unit = { cluster.subscribe(self, initialStateMode = InitialStateAsEvents, classOf[MemberUp], classOf[MemberRemoved], classOf[UnreachableMember]) }
例如,对于MemberUp事件,我们可以获取到对应Actor的引用ActorRef,然后通过与其进行消息交换,一起协同完成特定任务。
- Akka成员角色(Node Role)
Akka支持在每个成员节点加入集群的时候,设置成员自己的角色。通过角色划分,可以将使用Akka集群处理业务的系统划分为多个处理逻辑独立的子系统,每个子系统处理自己的业务逻辑,而且,划分得到的多个子系统都处于一个统一的Akka集群中。因此,每个子系统也具备了Akka集群所具有的特性,如故障检测、状态转移、状态传播等等。
Akka集群应用实践
我们基于Akka实现了一个简单的模拟日志实时处理的集群系统,可以从任何数据源输入数据,如文件、消息中间件Kafka、数据库,还可以是一个远程调用请求,我们收集数据,然数据经过一个拦截器层,最后解析处理数据为特定格式,最后数据写入Kafka。具体实现逻辑如下图所示:
上图中,我们将日志实时处理系统分为3个子系统,通过Akka的Role来进行划分,3个角色分别为collector、interceptor、processor,3个子系统中的节点都是整个Akka集群的成员。整个集群系统中的数据流向是:collector接收数据(或者直接对接特定数据源而产生数据),我们这里模式发送Nginx日志记录行,将数据发送到interceptor;interceptor收到collector发送的日志记录行,解析出请求的真是IP地址,拦截在黑名单IP列表中的请求,如果IP地址不在黑名单,则发送给processor去处理;processor对整个日志记录行进行处理,最后保存到Kakfa中。
我们抽象出用来订阅集群事件相关的逻辑,实现抽象类为ClusterRoledWorker,代码如下所示:
package org.shirdrn.scala.akka.cluster import akka.actor._ import akka.cluster.ClusterEvent.{InitialStateAsEvents, MemberEvent, MemberUp, UnreachableMember} import akka.cluster.{Cluster, Member} abstract class ClusterRoledWorker extends Actor with ActorLogging { // 创建一个Cluster实例 val cluster = Cluster(context.system) // 用来缓存下游注册过来的子系统ActorRef var workers = IndexedSeq.empty[ActorRef] override def preStart(): Unit = { // 订阅集群事件 cluster.subscribe(self, initialStateMode = InitialStateAsEvents, classOf[MemberUp], classOf[UnreachableMember], classOf[MemberEvent]) } override def postStop(): Unit = cluster.unsubscribe(self) /** * 下游子系统节点发送注册消息 */ def register(member: Member, createPath: (Member) => ActorPath): Unit = { val actorPath = createPath(member) log.info("Actor path: " + actorPath) val actorSelection = context.actorSelection(actorPath) actorSelection ! Registration } }
另外,定义了一些case class作为消息,方便在各个Actor之间进行发送/接收,代码如下所示:
package org.shirdrn.scala.akka.cluster object Registration extends Serializable trait EventMessage extends Serializable case class RawNginxRecord(sourceHost: String, line: String) extends EventMessage case class NginxRecord(sourceHost: String, eventCode: String, line: String) extends EventMessage case class FilteredRecord(sourceHost: String, eventCode: String, line: String, logDate: String, realIp: String) extends EventMessage
Akka Cluster使用一个配置文件,用来指定一些有关Actor的配置,我们使用的配置文件为application.conf,配置内容如下所示:
akka { loglevel = INFO stdout-loglevel = INFO event-handlers = ["akka.event.Logging$DefaultLogger"] actor { provider = "akka.cluster.ClusterActorRefProvider" } remote { enabled-transports = ["akka.remote.netty.tcp"] log-remote-lifecycle-events = off netty.tcp { hostname = "127.0.0.1" port = 0 } } cluster { seed-nodes = [ "akka.tcp://event-cluster-system@127.0.0.1:2751", "akka.tcp://event-cluster-system@127.0.0.1:2752", "akka.tcp://event-cluster-system@127.0.0.1:2753" ] seed-node-timeout = 60s auto-down-unreachable-after = 10s } }
上述配置中,我们创建的Akka Cluster的名称为event-cluster-system,初始指定了3个seed节点,实际上这3个节点是我们实现的collector角色的节点,用来收集数据。
下面,我们依次说明collector、interceptor、processor这3中角色的集群节点的处理逻辑:
- collector实现
我们实现的collector实现类为EventCollector,它是一个Actor,该实现类继承自ClusterRoledWorker抽象类,具体实现代码如下所示:
package org.shirdrn.scala.akka.cluster import akka.actor._ import akka.cluster.ClusterEvent._ import com.typesafe.config.ConfigFactory import scala.concurrent.ExecutionContext import scala.concurrent.duration._ import scala.concurrent.forkjoin.ForkJoinPool class EventCollector extends ClusterRoledWorker { @volatile var recordCounter : Int = 0 def receive = { case MemberUp(member) => log.info("Member is Up: {}", member.address) case UnreachableMember(member) => log.info("Member detected as Unreachable: {}", member) case MemberRemoved(member, previousStatus) => log.info("Member is Removed: {} after {}", member.address, previousStatus) case _: MemberEvent => // ignore case Registration => { // watch发送注册消息的interceptor,如果对应的Actor终止了,会发送一个Terminated消息 context watch sender workers = workers :+ sender log.info("Interceptor registered: " + sender) log.info("Registered interceptors: " + workers.size) } case Terminated(interceptingActorRef) => // interceptor终止,更新缓存的ActorRef workers = workers.filterNot(_ == interceptingActorRef) case RawNginxRecord(sourceHost, line) => { // 构造NginxRecord消息,发送到下游interceptor val eventCode = "eventcode=(\\d+)".r.findFirstIn(line).get log.info("Raw message: eventCode=" + eventCode + ", sourceHost=" + sourceHost + ", line=" + line) recordCounter += 1 if(workers.size > 0) { // 模拟Roudrobin方式,将日志记录消息发送给下游一组interceptor中的一个 val interceptorIndex = (if(recordCounter < 0) 0 else recordCounter) % workers.size workers(interceptorIndex) ! NginxRecord(sourceHost, eventCode, line) log.info("Details: interceptorIndex=" + interceptorIndex + ", interceptors=" + workers.size) } } } } /** * 用来模拟发送日志记录消息的Actor */ class EventClientActor extends Actor with ActorLogging { implicit val ec: ExecutionContext = ExecutionContext.fromExecutor(new ForkJoinPool()) def receive = { case _=> } val events = Map( "2751" -> List( """10.10.2.72 [21/Aug/2015:18:29:19 +0800] "GET /t.gif?installid=0000lAOX&udid=25371384b2eb1a5dc5643e14626ecbd4&sessionid=25371384b2eb1a5dc5643e14626ecbd41440152875362&imsi=460002830862833&operator=1&network=1×tamp=1440152954&action=14&eventcode=300039&page=200002& HTTP/1.0" "-" 204 0 "-" "Dalvik/1.6.0 (Linux; U; Android 4.4.4; R8207 Build/KTU84P)" "121.25.190.146"""", """10.10.2.8 [21/Aug/2015:18:29:19 +0800] "GET /t.gif?installid=0000VACO&udid=f6b0520cbc36fda6f63a72d91bf305c0&imsi=460012927613645&operator=2&network=1×tamp=1440152956&action=1840&eventcode=100003&type=1&result=0& HTTP/1.0" "-" 204 0 "-" "Dalvik/1.6.0 (Linux; U; Android 4.4.2; GT-I9500 Build/KOT49H)" "61.175.219.69"""" ), "2752" -> List( """10.10.2.72 [21/Aug/2015:18:29:19 +0800] "GET /t.gif?installid=0000gCo4&udid=636d127f4936109a22347b239a0ce73f&sessionid=636d127f4936109a22347b239a0ce73f1440150695096&imsi=460036010038180&operator=3&network=4×tamp=1440152902&action=1566&eventcode=101010&playid=99d5a59f100cb778b64b5234a189e1f4&radioid=1100000048450&audioid=1000001535718&playtime=3& HTTP/1.0" "-" 204 0 "-" "Dalvik/1.6.0 (Linux; U; Android 4.4.4; R8205 Build/KTU84P)" "106.38.128.67"""", """10.10.2.72 [21/Aug/2015:18:29:19 +0800] "GET /t.gif?installid=0000kPSC&udid=2ee585cde388ac57c0e81f9a76f5b797&operator=0&network=1×tamp=1440152968&action=6423&eventcode=100003&type=1&result=0& HTTP/1.0" "-" 204 0 "-" "Dalvik/v3.3.85 (Linux; U; Android L; P8 Build/KOT49H)" "202.103.133.112"""", """10.10.2.72 [21/Aug/2015:18:29:19 +0800] "GET /t.gif?installid=0000lABW&udid=face1161d739abacca913dcb82576e9d&sessionid=face1161d739abacca913dcb82576e9d1440151582673&operator=0&network=1×tamp=1440152520&action=1911&eventcode=101010&playid=b07c241010f8691284c68186c42ab006&radioid=1100000000762&audioid=1000001751983&playtime=158& HTTP/1.0" "-" 204 0 "-" "Dalvik/1.6.0 (Linux; U; Android 4.1; H5 Build/JZO54K)" "221.232.36.250"""" ), "2753" -> List( """10.10.2.8 [21/Aug/2015:18:29:19 +0800] "GET /t.gif?installid=0000krJw&udid=939488333889f18e2b406d2ece8f938a&sessionid=939488333889f18e2b406d2ece8f938a1440137301421&imsi=460028180045362&operator=1&network=1×tamp=1440152947&action=1431&eventcode=300030&playid=e1fd5467085475dc4483d2795f112717&radioid=1100000001123&audioid=1000000094911&playtime=951992& HTTP/1.0" "-" 204 0 "-" "Dalvik/1.6.0 (Linux; U; Android 4.0.4; R813T Build/IMM76D)" "5.45.64.205"""", """10.10.2.72 [21/Aug/2015:18:29:19 +0800] "GET /t.gif?installid=0000kcpz&udid=cbc7bbb560914c374cb7a29eef8c2144&sessionid=cbc7bbb560914c374cb7a29eef8c21441440152816008&imsi=460008782944219&operator=1&network=1×tamp=1440152873&action=360&eventcode=200003&page=200003&radioid=1100000046018& HTTP/1.0" "-" 204 0 "-" "Dalvik/v3.3.85 (Linux; U; Android 4.4.2; MX4S Build/KOT49H)" "119.128.106.232"""", """10.10.2.8 [21/Aug/2015:18:29:19 +0800] "GET /t.gif?installid=0000juRL&udid=3f9a5ffa69a5cd5f0754d2ba98c0aeb2&imsi=460023744091238&operator=1&network=1×tamp=1440152957&action=78&eventcode=100003&type=1&result=0& HTTP/1.0" "-" 204 0 "-" "Dalvik/v3.3.85 (Linux; U; Android 4.4.3; S?MSUNG. Build/KOT49H)" "223.153.72.78"""" ) ) val ports = Seq("2751","2752", "2753") val actors = scala.collection.mutable.HashMap[String, ActorRef]() ports.foreach { port => // 创建一个Config对象 val config = ConfigFactory.parseString("akka.remote.netty.tcp.port=" + port) .withFallback(ConfigFactory.parseString("akka.cluster.roles = [collector]")) .withFallback(ConfigFactory.load()) // 创建一个ActorSystem实例 val system = ActorSystem("event-cluster-system", config) actors(port) = system.actorOf(Props[EventCollector], name = "collectingActor") } Thread.sleep(30000) context.system.scheduler.schedule(0 millis, 5000 millis) { // 使用Akka的Scheduler,模拟定时发送日志记录消息 ports.foreach { port => events(port).foreach { line => println("RAW: port=" + port + ", line=" + line) actors(port) ! RawNginxRecord("host.me:" + port, line) } } } } object EventClient extends App { val system = ActorSystem("client") // 创建EventClientActor实例 val clientActorRef = system.actorOf(Props[EventClientActor], name = "clientActor") system.log.info("Client actor started: " + clientActorRef) }
上面代码中,EventClientActor并不是属于我们创建的Akka集群event-cluster-system,它是一个位于集群外部的节点,它模拟向各个collector角色的节点发送消息。
- interceptor实现
与编写collector类似,实现的interceptor的Actor实现类为EventInterceptor,代码如下所示:
package org.shirdrn.scala.akka.cluster import akka.actor._ import akka.cluster.ClusterEvent._ import akka.cluster.Member import akka.cluster.protobuf.msg.ClusterMessages.MemberStatus import com.typesafe.config.ConfigFactory import net.sf.json.JSONObject import org.shirdrn.scala.akka.cluster.utils.DatetimeUtils class EventInterceptor extends ClusterRoledWorker { @volatile var interceptedRecords : Int = 0 val IP_PATTERN = "[^\\s]+\\s+\\[([^\\]]+)\\].+\"(\\d+\\.\\d+\\.\\d+\\.\\d+)\"".r val blackIpList = Array( "5.9.116.101", "103.42.176.138", "123.182.148.65", "5.45.64.205", "27.159.226.192", "76.164.228.218", "77.79.178.186", "104.200.31.117", "104.200.31.32", "104.200.31.238", "123.182.129.108", "220.161.98.39", "59.58.152.90", "117.26.221.236", "59.58.150.110", "123.180.229.156", "59.60.123.239", "117.26.222.6", "117.26.220.88", "59.60.124.227", "142.54.161.50", "59.58.148.52", "59.58.150.85", "202.105.90.142" ).toSet log.info("Black IP count: " + blackIpList.size) blackIpList.foreach(log.info(_)) def receive = { case MemberUp(member) => log.info("Member is Up: {}", member.address) register(member, getCollectorPath) case state: CurrentClusterState => // 如果加入Akka集群的成员节点是Up状态,并且是collector角色,则调用register向collector进行注册 state.members.filter(_.status == MemberStatus.Up) foreach(register(_, getCollectorPath)) case UnreachableMember(member) => log.info("Member detected as Unreachable: {}", member) case MemberRemoved(member, previousStatus) => log.info("Member is Removed: {} after {}", member.address, previousStatus) case _: MemberEvent => // ignore case Registration => { context watch sender workers = workers :+ sender log.info("Processor registered: " + sender) log.info("Registered processors: " + workers.size) } case Terminated(processingActorRef) => workers = workers.filterNot(_ == processingActorRef) case NginxRecord(sourceHost, eventCode, line) => { val (isIpInBlackList, data) = checkRecord(eventCode, line) if(!isIpInBlackList) { interceptedRecords += 1 if(workers.size > 0) { val processorIndex = (if (interceptedRecords < 0) 0 else interceptedRecords) % workers.size workers(processorIndex) ! FilteredRecord(sourceHost, eventCode, line, data.getString("eventdate"), data.getString("realip")) log.info("Details: processorIndex=" + processorIndex + ", processors=" + workers.size) } log.info("Intercepted data: data=" + data) } else { log.info("Discarded: " + line) } } } def getCollectorPath(member: Member): ActorPath = { RootActorPath(member.address) / "user" / "collectingActor" } /** * 检查collector发送的消息所对应的IP是否在黑名单列表中 */ private def checkRecord(eventCode: String, line: String): (Boolean, JSONObject) = { val data: JSONObject = new JSONObject() var isIpInBlackList = false IP_PATTERN.findFirstMatchIn(line).foreach { m => val rawDt = m.group(1) val dt = DatetimeUtils.format(rawDt) val realIp = m.group(2) data.put("eventdate", dt) data.put("realip", realIp) data.put("eventcode", eventCode) isIpInBlackList = blackIpList.contains(realIp) } (isIpInBlackList, data) } } object EventInterceptor extends App { Seq("2851","2852").foreach { port => val config = ConfigFactory.parseString("akka.remote.netty.tcp.port=" + port) .withFallback(ConfigFactory.parseString("akka.cluster.roles = [interceptor]")) .withFallback(ConfigFactory.load()) val system = ActorSystem("event-cluster-system", config) val processingActor = system.actorOf(Props[EventInterceptor], name = "interceptingActor") system.log.info("Processing Actor: " + processingActor) } }
上述代码中,解析出Nginx日志记录中的IP地址,查看其是否在IP黑名单列表中,如果在内名单中则直接丢掉该记录数据。
- processor实现
EventProcessor的实现代码,如下所示:
package org.shirdrn.scala.akka.cluster import java.util.Properties import akka.actor._ import akka.cluster.ClusterEvent._ import akka.cluster.Member import akka.cluster.protobuf.msg.ClusterMessages.MemberStatus import com.typesafe.config.ConfigFactory import kafka.producer.{KeyedMessage, Producer, ProducerConfig} import net.sf.json.JSONObject class EventProcessor extends ClusterRoledWorker { val topic = "app_events" val producer = KakfaUtils.createProcuder def receive = { case MemberUp(member) => log.info("Member is Up: {}", member.address) // 将processor注册到上游的collector中 register(member, getProcessorPath) case state: CurrentClusterState => state.members.filter(_.status == MemberStatus.Up).foreach(register(_, getProcessorPath)) case UnreachableMember(member) => log.info("Member detected as Unreachable: {}", member) case MemberRemoved(member, previousStatus) => log.info("Member is Removed: {} after {}", member.address, previousStatus) case _: MemberEvent => // ignore case FilteredRecord(sourceHost, eventCode, line, nginxDate, realIp) => { val data = process(eventCode, line, nginxDate, realIp) log.info("Processed: data=" + data) // 将解析后的消息一JSON字符串的格式,保存到Kafka中 producer.send(new KeyedMessage[String, String](topic, sourceHost, data.toString)) } } def getProcessorPath(member: Member): ActorPath = { RootActorPath(member.address) / "user" / "interceptingActor" } private def process(eventCode: String, line: String, eventDate: String, realIp: String): JSONObject = { val data: JSONObject = new JSONObject() "[\\?|&]{1}([^=]+)=([^&]+)&".r.findAllMatchIn(line) foreach { m => val key = m.group(1) val value = m.group(2) data.put(key, value) } data.put("eventdate", eventDate) data.put("realip", realIp) data } } object KakfaUtils { // bin/kafka-topics.sh --create -zookeeper zk1:2181,zk2:2181,zk3:2181/data-dept/kafka --replication-factor 2 --partitions 2 --topic app_events val props = new Properties() val config = Map( "metadata.broker.list" -> "hadoop2:9092,hadoop3:9092", "serializer.class" -> "kafka.serializer.StringEncoder", "producer.type" -> "async" ) config.foreach(entry => props.put(entry._1, entry._2)) val producerConfig = new ProducerConfig(props) def createProcuder() : Producer[String, String] = { new Producer[String, String](producerConfig) } } object EventProcessor extends App { // 启动了5个EventProcessor Seq("2951","2952", "2953", "2954", "2955") foreach { port => val config = ConfigFactory.parseString("akka.remote.netty.tcp.port=" + port) .withFallback(ConfigFactory.parseString("akka.cluster.roles = [processor]")) .withFallback(ConfigFactory.load()) val system = ActorSystem("event-cluster-system", config) val processingActor = system.actorOf(Props[EventProcessor], name = "processingActor") system.log.info("Processing Actor: " + processingActor) } }
角色为processor的Actor的实现类为EventProcessor,我们在其伴生对象中创建了5个实例,分别对应不同的端口。解析的Nginx日志记录最后保存到Kafka,示例如下所示:
{"installid":"0000VACO","imsi":"460012927613645","network":"1","action":"1840","type":"1","eventdate":"2015-08-21 18:29:19","realip":"61.175.219.69"} {"installid":"0000kcpz","sessionid":"cbc7bbb560914c374cb7a29eef8c21441440152816008","operator":"1","timestamp":"1440152873","eventcode":"200003","radioid":"1100000046018","eventdate":"2015-08-21 18:29:19","realip":"119.128.106.232"} {"installid":"0000lAOX","sessionid":"25371384b2eb1a5dc5643e14626ecbd41440152875362","operator":"1","timestamp":"1440152954","eventcode":"300039","eventdate":"2015-08-21 18:29:19","realip":"121.25.190.146"}
参考链接
- http://doc.akka.io/docs/akka/2.3.12/common/cluster.html
- http://doc.akka.io/docs/akka/2.3.12/scala/cluster-usage.html
- https://github.com/akka/akka/tree/master/akka-samples
本文基于署名-非商业性使用-相同方式共享 4.0许可协议发布,欢迎转载、使用、重新发布,但务必保留文章署名时延军(包含链接:http://shiyanjun.cn),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请与我联系。
请问下图是用什么工具画的?
图是用Visio画的
您好,因為圖實在太好看了,請問可以在公司內部投影片引用嗎?會附上連結跟備註
可以的,能分享知识是一种美德。