Cloudera公司已经推出了基于Hadoop平台的查询统计分析工具Impala,只要熟悉SQL,就可以熟练地使用Impala来执行查询与分析的功能。不过Impala的SQL和关系数据库的SQL还是有一点微妙地不同的。
下面,我们设计一个表,通过该表中的数据,来将SQL查询与统计的语句,使用Solr查询的方式来与SQL查询对应。这个翻译的过程,是非常有趣的,你可以看到Solr一些很不错的功能。
用来示例的表结构设计,如图所示:
下面,我们通过给出一些SQL查询统计语句,然后对应翻译成Solr查询语句,然后对比结果。
查询对比
- 条件组合查询
SQL查询语句:
SELECT log_id,start_time,end_time,prov_id,city_id,area_id,idt_id,cnt,net_type FROM v_i_event WHERE prov_id = 1 AND net_type = 1 AND area_id = 10304 AND time_type = 1 AND time_id >= 20130801 AND time_id <= 20130815 ORDER BY log_id LIMIT 10;
查询结果,如图所示:
Solr查询URL:
http://slave1:8888/solr-cloud/i_event/select?q=*:*&fl=log_id,start_time,end_time,prov_id,city_id,area_id,idt_id,cnt,net_type&fq=prov_id:1 AND net_type:1 AND area_id:10304 AND time_type:1 AND time_id:[20130801 TO 20130815]&sort=log_id asc&start=0&rows=10
查询结果,如下所示:
<response> <lst name="responseHeader"> <int name="status">0</int> <int name="QTime">4</int> </lst> <result name="response" numFound="77" start="0"> <doc> <int name="log_id">6827</int> <long name="start_time">1375072117</long> <long name="end_time">1375081683</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10304</int> <int name="idt_id">11002</int> <int name="cnt">0</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6827</int> <long name="start_time">1375072117</long> <long name="end_time">1375081683</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10304</int> <int name="idt_id">11000</int> <int name="cnt">0</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6851</int> <long name="start_time">1375142158</long> <long name="end_time">1375146391</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10304</int> <int name="idt_id">14001</int> <int name="cnt">5</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6851</int> <long name="start_time">1375142158</long> <long name="end_time">1375146391</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10304</int> <int name="idt_id">11002</int> <int name="cnt">23</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6851</int> <long name="start_time">1375142158</long> <long name="end_time">1375146391</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10304</int> <int name="idt_id">10200</int> <int name="cnt">55</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6851</int> <long name="start_time">1375142158</long> <long name="end_time">1375146391</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10304</int> <int name="idt_id">14000</int> <int name="cnt">4</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6851</int> <long name="start_time">1375142158</long> <long name="end_time">1375146391</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10304</int> <int name="idt_id">11000</int> <int name="cnt">1</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6851</int> <long name="start_time">1375142158</long> <long name="end_time">1375146391</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10304</int> <int name="idt_id">10201</int> <int name="cnt">31</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6851</int> <long name="start_time">1375142158</long> <long name="end_time">1375146391</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10304</int> <int name="idt_id">8002</int> <int name="cnt">8</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6851</int> <long name="start_time">1375142158</long> <long name="end_time">1375146391</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10304</int> <int name="idt_id">8000</int> <int name="cnt">30</int> <int name="net_type">1</int> </doc> </result> </response>
对比上面结果,除了根据idt_id排序方式不同以外(Impala是升序,Solr是降序),其他是相同的。
- 单个字段分组统计
SQL查询语句:
SELECT prov_id, SUM(cnt) AS sum_cnt, AVG(cnt) AS avg_cnt, MAX(cnt) AS max_cnt, MIN(cnt) AS min_cnt, COUNT(cnt) AS count_cnt FROM v_i_event GROUP BY prov_id;
查询结果,如图所示:
Solr查询URL:
http://slave1:8888/solr-cloud/i_event/select?q=*:*&stats=true&stats.field=cnt&rows=0&indent=true
查询结果,如下所示:
<response> <lst name="responseHeader"> <int name="status">0</int> <int name="QTime">2</int> </lst> <result name="response" numFound="4088" start="0"></result> <lst name="stats"> <lst name="stats_fields"> <lst name="cnt"> <double name="min">0.0</double> <double name="max">1258.0</double> <long name="count">4088</long> <long name="missing">0</long> <double name="sum">32587.0</double> <double name="sumOfSquares">9170559.0</double> <double name="mean">7.971379647749511</double> <double name="stddev">46.69344567709268</double> <lst name="facets" /> </lst> </lst> </lst> </response>
对比查询结果,Solr提供了更多的统计项,如标准差(stddev)等,与SQL查询结果是一致的。
- IN条件查询
SQL查询语句:
SELECT log_id,start_time,end_time,prov_id,city_id,area_id,idt_id,cnt,net_typ FROM v_i_event WHERE prov_id = 1 AND net_type = 1 AND city_id IN(106,103) AND idt_id IN(12011,5004,6051,6056,8002) AND time_type = 1 AND time_id >= 20130801 AND time_id <= 20130815 ORDER BY log_id, start_time DESC LIMIT 10;
查询结果,如图所示:
Solr查询URL:
http://slave1:8888/solr-cloud/i_event/select?q=*:*&fl=log_id,start_time,end_time,prov_id,city_id,area_id,idt_id, cnt,net_type&fq=prov_id:1 AND net_type:1 AND (city_id:106 OR city_id:103) AND (idt_id:12011 OR idt_id:5004 OR idt_id:6051 OR idt_id:6056 OR idt_id:8002) AND time_type:1 AND time_id:[20130801 TO 20130815]&sort=log_id asc ,start_time desc&start=0&rows=10
或
http://slave1:8888/solr-cloud/i_event/select?q=*:*&fl=log_id,start_time,end_time,prov_id,city_id,area_id,idt_id, cnt ,net_type&fq=prov_id:1&fq=net_type:1&fq=(city_id:106 OR city_id:103)&fq=(idt_id:12011 OR idt_id:5004 OR idt_id:6051 OR idt_id:6056 OR idt_id:8002)&fq=time_type:1&fq=time_id:[20130801 TO 20130815]&sort=log_id asc,start_time desc&start=0&rows=10
查询结果,如下所示:
<response> <lst name="responseHeader"> <int name="status">0</int> <int name="QTime">6</int> </lst> <result name="response" numFound="63" start="0"> <doc> <int name="log_id">6553</int> <long name="start_time">1374054184</long> <long name="end_time">1374054254</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10307</int> <int name="idt_id">12011</int> <int name="cnt">0</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6553</int> <long name="start_time">1374054184</long> <long name="end_time">1374054254</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10307</int> <int name="idt_id">5004</int> <int name="cnt">2</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6555</int> <long name="start_time">1374055060</long> <long name="end_time">1374055158</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">70104</int> <int name="idt_id">5004</int> <int name="cnt">3</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6555</int> <long name="start_time">1374055060</long> <long name="end_time">1374055158</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">70104</int> <int name="idt_id">12011</int> <int name="cnt">0</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6595</int> <long name="start_time">1374292508</long> <long name="end_time">1374292639</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10307</int> <int name="idt_id">5004</int> <int name="cnt">4</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6611</int> <long name="start_time">1374461233</long> <long name="end_time">1374461245</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10307</int> <int name="idt_id">5004</int> <int name="cnt">1</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6612</int> <long name="start_time">1374461261</long> <long name="end_time">1374461269</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10307</int> <int name="idt_id">5004</int> <int name="cnt">1</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6612</int> <long name="start_time">1374461261</long> <long name="end_time">1374461269</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10307</int> <int name="idt_id">12011</int> <int name="cnt">0</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6613</int> <long name="start_time">1374461422</long> <long name="end_time">1374461489</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10307</int> <int name="idt_id">6056</int> <int name="cnt">1</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6613</int> <long name="start_time">1374461422</long> <long name="end_time">1374461489</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10307</int> <int name="idt_id">6051</int> <int name="cnt">1</int> <int name="net_type">1</int> </doc> </result> </response>
对比查询结果,是一致的。
- 开区间范围条件查询
SQL查询语句:
SELECT log_id,start_time,end_time,prov_id,city_id,area_id,idt_id,cnt,net_type FROM v_i_event WHERE net_type = 1 AND idt_id IN(12011,5004,6051,6056,8002) AND time_type = 1 AND start_time >= 1373598465 AND end_time < 1374055254 ORDER BY log_id, start_time, idt_id DESC LIMIT 30;
查询结果,如图所示:
Solr查询URL:
http://slave1:8888/solr-cloud/i_event/select?q=*:*&fl=log_id,start_time,end_time,prov_id,city_id,area_id,idt_id,cnt,net_type&fq=net_type:1 AND (idt_id:12011 OR idt_id:5004 OR idt_id:6051 OR idt_id:6056 OR idt_id:8002) AND time_type:1 AND start_time:[1373598465 TO 1374055254]&fq =-start_time:1374055254&sort=log_id asc,start_time asc,idt_id desc&start=0&rows=30
或
http://slave1:8888/solr-cloud/i_event/select?q=*:*&fl=log_id,start_time,end_time,prov_id,city_id,area_id,idt_id,cnt,net_type&fq=net_type:1 AND (idt_id:12011 OR idt_id:5004 OR idt_id:6051 OR idt_id:6056 OR idt_id:8002) AND time_type:1 AND start_time:[1373598465 TO 1374055254] AND -start_time:1374055254&sort=log_id asc,start_time asc,idt_id desc&start=0&rows=30
或
http://slave1:8888/solr-cloud/i_event/select?q=*:*&fl=log_id,start_time,end_time,prov_id,city_id,area_id,idt_id,cnt,net_type&fq=net_type:1&fq=idt_id:12011 OR idt_id:5004 OR idt_id:6051 OR idt_id:6056 OR idt_id:8002&fq =time_type:1&fq=start_time:[1373598465 TO 1374055254]&fq =-start_time:1374055254&sort=log_id asc,start_time asc,idt_id desc&start=0&rows=30
查询结果,如下所示:
<response> <lst name="responseHeader"> <int name="status">0</int> <int name="QTime">5</int> </lst> <result name="response" numFound="4" start="0"> <doc> <int name="log_id">6553</int> <long name="start_time">1374054184</long> <long name="end_time">1374054254</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10307</int> <int name="idt_id">12011</int> <int name="cnt">0</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6553</int> <long name="start_time">1374054184</long> <long name="end_time">1374054254</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">10307</int> <int name="idt_id">5004</int> <int name="cnt">2</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6555</int> <long name="start_time">1374055060</long> <long name="end_time">1374055158</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">70104</int> <int name="idt_id">12011</int> <int name="cnt">0</int> <int name="net_type">1</int> </doc> <doc> <int name="log_id">6555</int> <long name="start_time">1374055060</long> <long name="end_time">1374055158</long> <int name="prov_id">1</int> <int name="city_id">103</int> <int name="area_id">70104</int> <int name="idt_id">5004</int> <int name="cnt">3</int> <int name="net_type">1</int> </doc> </result> </response>
- 多个字段分组统计(只支持count函数)
SQL查询语句:
SELECT city_id, area_id, COUNT(cnt) AS count_cnt FROM v_i_event WHERE prov_id = 1 AND net_type = 1 GROUP BY city_id, area_id;
查询结果,如图所示:
Solr查询URL:
http://slave1:8888/solr-cloud/i_event/select?q=*:*&facet=true&facet.pivot=city_id,area_id&fq=prov_id:1 AND net_type:1&rows=0&indent=true
查询结果,如下所示:
<response> <lst name="responseHeader"> <int name="status">0</int> <int name="QTime">72</int> </lst> <result name="response" numFound="1171" start="0"></result> <lst name="facet_counts"> <lst name="facet_queries" /> <lst name="facet_fields" /> <lst name="facet_dates" /> <lst name="facet_ranges" /> <lst name="facet_pivot"> <arr name="city_id,area_id"> <lst> <str name="field">city_id</str> <int name="value">103</int> <int name="count">678</int> <arr name="pivot"> <lst> <str name="field">area_id</str> <int name="value">10307</int> <int name="count">298</int> </lst> <lst> <str name="field">area_id</str> <int name="value">10315</int> <int name="count">120</int> </lst> <lst> <str name="field">area_id</str> <int name="value">10317</int> <int name="count">86</int> </lst> <lst> <str name="field">area_id</str> <int name="value">10304</int> <int name="count">67</int> </lst> <lst> <str name="field">area_id</str> <int name="value">10310</int> <int name="count">49</int> </lst> <lst> <str name="field">area_id</str> <int name="value">70104</int> <int name="count">48</int> </lst> <lst> <str name="field">area_id</str> <int name="value">10308</int> <int name="count">6</int> </lst> <lst> <str name="field">area_id</str> <int name="value">0</int> <int name="count">2</int> </lst> <lst> <str name="field">area_id</str> <int name="value">10311</int> <int name="count">2</int> </lst> </arr> </lst> <lst> <str name="field">city_id</str> <int name="value">0</int> <int name="count">463</int> <arr name="pivot"> <lst> <str name="field">area_id</str> <int name="value">0</int> <int name="count">395</int> </lst> <lst> <str name="field">area_id</str> <int name="value">10307</int> <int name="count">68</int> </lst> </arr> </lst> <lst> <str name="field">city_id</str> <int name="value">106</int> <int name="count">10</int> <arr name="pivot"> <lst> <str name="field">area_id</str> <int name="value">10304</int> <int name="count">10</int> </lst> </arr> </lst> <lst> <str name="field">city_id</str> <int name="value">110</int> <int name="count">8</int> <arr name="pivot"> <lst> <str name="field">area_id</str> <int name="value">0</int> <int name="count">8</int> </lst> </arr> </lst> <lst> <str name="field">city_id</str> <int name="value">118</int> <int name="count">8</int> <arr name="pivot"> <lst> <str name="field">area_id</str> <int name="value">10316</int> <int name="count">8</int> </lst> </arr> </lst> <lst> <str name="field">city_id</str> <int name="value">105</int> <int name="count">4</int> <arr name="pivot"> <lst> <str name="field">area_id</str> <int name="value">0</int> <int name="count">4</int> </lst> </arr> </lst> </arr> </lst> </lst> </response>
对比上面结果,Solr查询结果,需要从上面的各组中进行合并,得到最终的统计结果,结果和SQL结果是一致的。
- 多个字段分组统计(支持count、sum、max、min等函数)
一次对多个字段进行独立分组统计,Solr可以很好的支持。这相当于执行两个带有GROUP BY子句的SQL,这两个GROUP BY分别只对一个字段进行汇总统计。
SQL查询语句:
SELECT city_id, area_id, COUNT(cnt) AS count_cnt FROM v_i_event WHERE prov_id = 1 AND net_type = 1 GROUP BY city_id; SELECT city_id, area_id, COUNT(cnt) AS count_cnt FROM v_i_event WHERE prov_id = 1 AND net_type = 1 GROUP BY area_id;
查询结果,不再显示。
Solr查询URL:
>http://slave1:8888/solr-cloud/i_event/select?q=*:*&stats=true&stats.field=cnt&f.cnt.stats.facet=city_id&&f.cnt.stats.facet=area_id&fq=prov_id:1 AND net_type:1&rows=0&indent=true
查询结果,如下所示:
<response> <lst name="responseHeader"> <int name="status">0</int> <int name="QTime">6</int> </lst> <result name="response" numFound="1171" start="0"></result> <lst name="stats"> <lst name="stats_fields"> <lst name="cnt"> <double name="min">0.0</double> <double name="max">167.0</double> <long name="count">1171</long> <long name="missing">0</long> <double name="sum">3701.0</double> <double name="sumOfSquares">249641.0</double> <double name="mean">3.1605465414175917</double> <double name="stddev">14.260812879164407</double> <lst name="facets"> <lst name="city_id"> <lst name="0"> <double name="min">0.0</double> <double name="max">167.0</double> <long name="count">463</long> <long name="missing">0</long> <double name="sum">2783.0</double> <double name="sumOfSquares">238819.0</double> <double name="mean">6.010799136069115</double> <double name="stddev">21.92524420257807</double> <lst name="facets" /> </lst> <lst name="110"> <double name="min">0.0</double> <double name="max">1.0</double> <long name="count">8</long> <long name="missing">0</long> <double name="sum">3.0</double> <double name="sumOfSquares">3.0</double> <double name="mean">0.375</double> <double name="stddev">0.5175491695067657</double> <lst name="facets" /> </lst> <lst name="106"> <double name="min">0.0</double> <double name="max">0.0</double> <long name="count">10</long> <long name="missing">0</long> <double name="sum">0.0</double> <double name="sumOfSquares">0.0</double> <double name="mean">0.0</double> <double name="stddev">0.0</double> <lst name="facets" /> </lst> <lst name="105"> <double name="min">0.0</double> <double name="max">0.0</double> <long name="count">4</long> <long name="missing">0</long> <double name="sum">0.0</double> <double name="sumOfSquares">0.0</double> <double name="mean">0.0</double> <double name="stddev">0.0</double> <lst name="facets" /> </lst> <lst name="103"> <double name="min">0.0</double> <double name="max">55.0</double> <long name="count">678</long> <long name="missing">0</long> <double name="sum">915.0</double> <double name="sumOfSquares">10819.0</double> <double name="mean">1.3495575221238938</double> <double name="stddev">3.7625525739676986</double> <lst name="facets" /> </lst> <lst name="118"> <double name="min">0.0</double> <double name="max">0.0</double> <long name="count">8</long> <long name="missing">0</long> <double name="sum">0.0</double> <double name="sumOfSquares">0.0</double> <double name="mean">0.0</double> <double name="stddev">0.0</double> <lst name="facets" /> </lst> </lst> <lst name="area_id"> <lst name="10308"> <double name="min">0.0</double> <double name="max">1.0</double> <long name="count">6</long> <long name="missing">0</long> <double name="sum">1.0</double> <double name="sumOfSquares">1.0</double> <double name="mean">0.16666666666666666</double> <double name="stddev">0.408248290463863</double> <lst name="facets" /> </lst> <lst name="10310"> <double name="min">0.0</double> <double name="max">5.0</double> <long name="count">49</long> <long name="missing">0</long> <double name="sum">40.0</double> <double name="sumOfSquares">108.0</double> <double name="mean">0.8163265306122449</double> <double name="stddev">1.2528878206593208</double> <lst name="facets" /> </lst> <lst name="0"> <double name="min">0.0</double> <double name="max">167.0</double> <long name="count">409</long> <long name="missing">0</long> <double name="sum">2722.0</double> <double name="sumOfSquares">238550.0</double> <double name="mean">6.6552567237163816</double> <double name="stddev">23.243931908854</double> <lst name="facets" /> </lst> <lst name="10311"> <double name="min">0.0</double> <double name="max">0.0</double> <long name="count">2</long> <long name="missing">0</long> <double name="sum">0.0</double> <double name="sumOfSquares">0.0</double> <double name="mean">0.0</double> <double name="stddev">0.0</double> <lst name="facets" /> </lst> <lst name="10304"> <double name="min">0.0</double> <double name="max">55.0</double> <long name="count">77</long> <long name="missing">0</long> <double name="sum">370.0</double> <double name="sumOfSquares">9476.0</double> <double name="mean">4.805194805194805</double> <double name="stddev">10.064318107786017</double> <lst name="facets" /> </lst> <lst name="70104"> <double name="min">0.0</double> <double name="max">3.0</double> <long name="count">48</long> <long name="missing">0</long> <double name="sum">51.0</double> <double name="sumOfSquares">117.0</double> <double name="mean">1.0625</double> <double name="stddev">1.1560433254047038</double> <lst name="facets" /> </lst> <lst name="10307"> <double name="min">0.0</double> <double name="max">12.0</double> <long name="count">366</long> <long name="missing">0</long> <double name="sum">274.0</double> <double name="sumOfSquares">768.0</double> <double name="mean">0.7486338797814208</double> <double name="stddev">1.2418218134151426</double> <lst name="facets" /> </lst> <lst name="10315"> <double name="min">0.0</double> <double name="max">4.0</double> <long name="count">120</long> <long name="missing">0</long> <double name="sum">143.0</double> <double name="sumOfSquares">359.0</double> <double name="mean">1.1916666666666667</double> <double name="stddev">1.2588899560996694</double> <lst name="facets" /> </lst> <lst name="10316"> <double name="min">0.0</double> <double name="max">0.0</double> <long name="count">8</long> <long name="missing">0</long> <double name="sum">0.0</double> <double name="sumOfSquares">0.0</double> <double name="mean">0.0</double> <double name="stddev">0.0</double> <lst name="facets" /> </lst> <lst name="10317"> <double name="min">0.0</double> <double name="max">5.0</double> <long name="count">86</long> <long name="missing">0</long> <double name="sum">100.0</double> <double name="sumOfSquares">262.0</double> <double name="mean">1.1627906976744187</double> <double name="stddev">1.3093371930442208</double> <lst name="facets" /> </lst> </lst> </lst> </lst> </lst> </lst> </response>
- 多个字段联合分组统计(支持count、sum、max、min等函数)
SQL查询语句:
SELECT city_id, area_id, SUM(cnt) AS sum_cnt, AVG(cnt) AS avg_cnt, MAX(cnt) AS max_cnt, MIN(cnt) AS min_cnt, COUNT(cnt) AS count_cnt FROM v_i_event WHERE prov_id = 1 AND net_type = 1 GROUP BY city_id, area_id;
查询结果,如图所示:
Solr目前不能简单的支持这种查询,如果想要满足这种查询统计,需要在schema的设计上,将一个字段设置为多值,然后通过多个值进行分组统计。如果应用中查询统计分析的模式比较固定,预先知道哪些字段会用于联合分组统计,完全可以在设计的时候,考虑设置多值字段来满足这种需求。
参考链接
- http://wiki.apache.org/solr/SimpleFacetParameters
- http://wiki.apache.org/solr/HierarchicalFaceting#Pivot_Facets
- http://docs.lucidworks.com/display/solr/The+Stats+Component
- http://docs.lucidworks.com/display/solr/Faceting
本文基于署名-非商业性使用-相同方式共享 4.0许可协议发布,欢迎转载、使用、重新发布,但务必保留文章署名时延军(包含链接:http://shiyanjun.cn),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请与我联系。